
UNIT-IV 

Recurrence Relation 

Generating Functions: 

In mathematics, a generating function is a formal power series in one indeterminate, whose 

coefficients encode information about a sequence of numbers an that is indexed by the natural 

numbers. Generating functions were first introduced by Abraham de Moivre in 1730, in order to 

solve the general linear recurrence problem. One can generalize to formal power series in more 

than one indeterminate, to encode information about arrays of numbers indexed by several 

natural numbers. 

Generating functions are not functions in the formal sense of a mapping from a domain to a 

codomain; the name is merely traditional, and they are sometimes more correctly called 

generating series. 

Ordinary generating function 

The ordinary generating function of a sequence an is 

 

When the term generating function is used without qualification, it is usually taken to mean an 

ordinary generating function. 

If an is the probability mass function of a discrete random variable, then its ordinary generating 

function is called a probability-generating function. 

The ordinary generating function can be generalized to arrays with multiple indices. For 

example, the ordinary generating function of a two-dimensional array am, n (where n and m are 

natural numbers) is 

 

 

 



Example: 

 

 

Exponential generating function 

The exponential generating function of a sequence an is 

 

Example: 

 

Function of Sequences: 

Generating functions giving the first few powers of the nonnegative integers are given in the 

following table.  
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There are many beautiful generating functions for special functions in number theory. A few 

particularly nice examples are  

  

 

(2)  
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(4)  

 

 



for the partition function P, where is a q-Pochhammer symbol, and  

  

 

(5)  

  

 

(6)  

  

 

(7)  

for the Fibonacci numbers .  

Generating functions are very useful in combinatorial enumeration problems. For example, the 

subset sum problem, which asks the number of ways to select out of given integers such 

that their sum equals , can be solved using generating functions.  

Calculating Coefficient of generating function: 

By using the following polynomial expansions, we can calculate the coefficient of a generating 

function. 
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Polynomial Expansions:

 



 

 

Recurrence relations: 

Introduction :A recurrence relation is a formula that relates for any integer n ≥ 1, the n-th term 

of a sequence A = {ar}∞r=0 to one or more of the terms a0,a1,….,an-1. 

Example.   If Sn denotes the sum of the first n positive integers, then   

(1) Sn = n + Sn-1. Similarly if d is a real number, then the nth term of an arithmetic progression 

with common difference d satisfies the relation  

(2) an = an -1 + d. Likewise if pn denotes the nth term of a geometric progression with common 

ratio r, then  



(3) pn = r pn – 1. We list other examples as: 

 (4) an – 3an-1 + 2an-2 = 0. 

 (5) an – 3 an-1+ 2 an-2 = n2 + 1.  

 (6) an – (n - 1) an-1 - (n - 1) an-2 = 0. 

 (7) an – 9 an-1+ 26 an-2 – 24 an-3 = 5n. 

 (8) an – 3(an-1)2 + 2 an-2 = n. 

 (9) an = a0 an-1+ a1 an-2+ … + an-1a0. 

 (10) a2n + (an-1)2 = -1. 

 

Definition.     Suppose n and k are nonnegative integers. A recurrence relation of the form 

c0(n)an + c1(n)an-1 + …. + ck(n)an-k = f(n) for n ≥ k, where c0(n), c1(n),…., ck(n), and f(n) are 

functions of n is said to be a linear recurrence relation. If c0(n) and ck(n) are not identically 

zero, then it is said to be a linear recurrence relation degree k. If c0(n), c1(n),…., ck(n) are 

constants, then the recurrence relation is known as a linear relation with constant coefficients. 

If f(n) is identically zero, then the recurrence relation is said to be homogeneous; otherwise, it is 

inhomogeneous. 

    Thus, all the examples above are linear recurrence relations except (8), (9), and (10); the 

relation (8), for instance, is not linear because of the squared term.  

The relations in (3), (4) , (5), and (7) are linear with constant coefficients.  

Relations (1), (2), and (3) have degree 1; (4), (5), and (6) have degree 2; (7) has degree 3. 

Relations (3) , (4), and (6) are homogeneous. 

            There are no general techniques that will enable one to solve all recurrence relations. 

There are, nevertheless, techniques that will enable us to solve linear recurrence relations with 

constant coefficients. 

SOLVING RECURRENCE RELATIONS BY SUSTITUTION 

AND GENERATING FUNCTIONS 

         We shall consider four methods of solving recurrence relations in this and the next two 

sections: 

      1. Substitution (also called iteration), 

      2. Generating functions, 

      3. Characteristics roots, and  

      4. Undetermined coefficients. 

          In the substitution method the recurrence relation for an is used repeatedly to solve for a 

general expression for an in terms of n. We desire that this expression involve no other terms of 

the sequence except those given by boundary conditions. 

          The mechanics of this method are best described in terms of examples. We used this 

method in Example5.3.4. Let us also illustrate the method in the following examples. 

 



Example 

        Solve the recurrence relation an = a n-1 + f(n) for n ³1 by substitution 

                        a1= a0 + f(1) 

                        a2 = a1 + f(2) = a0 + f(1) + f(2)) 

                        a3 = a2 + f(3)=  a0 + f(1) + f(2) + f(3) 

                                                . 

                                                . 

                                                . 

                        an = a0 + f(1) + f(2) +….+ f(n) 

                                   n 

                        = a0 + ∑ f(k) 

                                  K = 1 

Thus, an is just the sum of the f(k) „s plus a0. 

More generally, if c is  a constant then we can solve an = c a n-1  + f(n) for n ³1 in the same way: 

a1 = c a0 + f(1) 

a2 = c a1 +  f(2) = c (c a0 + f(1)) + f(2) 

    = c2 a0 + c f(1) + f(2) 

a3= c a2 + f(3) = c(c 2 a0 + c f(1) + f(2)) + f(3) 

=c3 a0 + c2  f(1) + c f(2) + f(3) 

. 

. 

. 

an = c a n-1 + f(n) = c(c n-1 a0 + c n-2 f(1) +. . . + c n-2 + f(n-1)) + f(n) 

    =c n a0 + c n-1 f(1) + c n-2 f(2) +. . .+ c f(n-1) + f(n)  

Or 

an =  c n a0 + ∑c n-k f(k) 

Solution of Linear Inhomogeneous Recurrence Relations: 

 

The equation + 1 −1+ 2 −2=( ), where 1and 2 are constant, and ( ) is not identically 

0, is called a second-order linear inhomogeneous recurrence relation (or difference equation) 

with constant coefficients. The homogeneous case, which we‟ve looked at already, occurs when 

( )≡0. The inhomogeneous case occurs more frequently. The homogeneous case is so important 

largely because it gives us the key to solving the inhomogeneous equation. If you‟ve studied 

linear differential equations with constant coefficients, you‟ll see the parallel. We will call the 



difference obtained by setting the right-hand side equal to 0, the “associated homogeneous 

equation.” We know how to solve this. Say that  is a solution. Now suppose that ( ) is any 

particular solution of the inhomogeneous equation. (That is, it solves the equation, but does not 

necessarily match the initial data.) Then = +( ) is a solution to the inhomogeneous equation, 

which you can see simply by substituting  into the equation. On the other hand, every solution 

 of the inhomogeneous equation is of the form = +( ) where  is a solution of the 

homogeneous equation, and ( ) is a particular solution of the inhomogeneous equation. The 

proof of this is straightforward. If we have two solutions to the inhomogeneous equation, say 1 

and 2, then their difference 1− 2=  is a solution to the homogeneous equation, which you 

can check by substitution. But then 1= + 2, and we can set 2=( ), since by assumption, 2 

is a particular solution. This leads to the following theorem: the general solution to the 

inhomogeneous equation is the general solution to the associated homogeneous equation, 

plus any particular solution to the inhomogeneous equation. This gives the following 

procedure for solving the inhomogeneous equation:  

1) Solve the associated homogeneous equation by the method we‟ve learned. This will involve 

variable (or undetermined) coefficients.  

2) Guess a particular solution to the inhomogeneous equation. It is because of the guess that I‟ve 

called this a procedure, not an algorithm. For simple right-hand sides , we can say how to 

compute a particular solution, and in these cases, the procedure merits the name “algorithm.”  

3) The general solution to the inhomogeneous equation is the sum of the answers from the two 

steps above.  

4) Use the initial data to solve for the undetermined coefficients from step 1.  



To solve the equation  − 6 −1 + 8 −2 = 3. Let‟s suppose that we are also given the initial 

data 0 = 3, 1 = 3. The associated homogeneous equation is  − 6 −1 + 8 −2 = 0, so the 

characteristic equation is 2 − 6  + 8 = 0, which has roots 1 = 2 and 2 = 4. Thus, the general 

solution to the associated homogeneous equation is 12  + 24 . When the right-hand side is a 

polynomial, as in this case, there will always be a particular solution that is a polynomial. 

Usually, a polynomial of the same degree will work, so we‟ll guess in this case that there is a 

constant  that solves the homogeneous equation. If that is so, then  =  −1 =  −2 = , and 

substituting into the equation gives  − 6  + 8  = 3, and we find that  = 1. Now, the general 

solution to the inhomogeneous equations is 12  + 24  + 1. Reassuringly, this is the answer 

given in the back of the book. Our initial data lead to the equations 1 + 2 + 1 = 3 and 2 1 + 

4 2 + 1 = 3, whose solution is 1 = 3, 2 = −1. Finally, the solution to the inhomogeneous 

equation, with the initial condition given, is  = 3 ∙ 2  − 4  + 1. Sometimes, a polynomial of 

the same degree as the right-hand side doesn‟t work. This happens when the characteristic 

equation has 1 as a root. If our equation had been  − 6  −1 + 5 −2 = 3, when we guessed 

that the particular solution was a constant , we‟d have arrived at the equation  − 6  + 5  = 3, 

or 0 = 3. The way to deal with this is to increase the degree of the polynomial. Instead of 

assuming that the solution is constant, we‟ll assume that it‟s linear. In fact, we‟ll guess that it is 

of the form  

  = . Then we have −6 −1 +5 −2 =3, which simplifies to 6 −10 =3 so that =−34 . 

Thus,   = −3 4 . This won‟t be enough if 1 is a root of multiplicity 2, that is, if −1 2 is a 

factor of the characteristic polynomial. Then there is a particular solution of the form   = 2. 

For second-order equations, you never have to go past this. If the right-hand side is a polynomial 

of degree greater than 0, then the process works juts the same, except that you start with a 

polynomial of the same degree, increase the degree by 1, if necessary, and then once more, if 

need be. For example, if the right-hand side were   =2 −1, we would start by guessing a 

particular solution   = 1 + 2. If it turned out that 1 was a characteristic root, we would 

amend our guess to   = 1 2+ 2 + 3. If 1 is a double root, this will fail also, but   

= 1 3+ 2 2+ 3 + 4 will work in this case.  

Another case where there is a simple way of guessing a particular solution is when the right-hand 

side is an exponential, say   = . In that case, we guess that a particular solution is just a 

constant multiple of , say ( )= . Again, we gave trouble when 1 is a characteristic root. We 

then guess that   = , which will fail only if 1 is a double root. In that case we must use  

 = 2 , which is as far as we ever have to go in the second-order case. These same ideas 

extend to higher-order recurrence relations, but we usually solve them numerically, rather than 

exactly. A third-order linear difference equation with constant coefficients leads to a cubic 

characteristic polynomial. There is a formula for the roots of a cubic, but it‟s very complicated. 

For fourth-degree polynomials, there‟s also a formula, but it‟s even worse. For fifth and higher 

degrees, no such formula exists. Even for the third-order case, the exact solution of a simple-

looking inhomogeneous linear recurrence relation with constant coefficients can take pages to 

write down. The coefficients will be complicated expressions involving square roots and cube 



roots. For most, if not all, purposes, a simpler answer with numerical coefficients is better, even 

though they must in the nature of things, be approximate.  

The procedure I‟ve suggested may strike you as silly. After all, we‟ve already solved the 

characteristic equation, so we know whether 1 is a characteristic root, and what it‟s multiplicity 

is. Why not start with a polynomial of the correct degree? This is all well and good, while you‟re 

taking the course, and remember the procedure in detail. However, if you have to use this 

procedure some years from now, you probably won‟t remember all the details. Then the method 

I‟ve suggested will be valuable. Alternatively, you can start with a general polynomial of the 

maximum possible degree This leads to a lot of extra work if you‟re solving by hand, but it‟s the 

approach I prefer for computer solution. 

 


